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Abstract
This paper is about programming support for local-first applications that manage private data
locally, but still synchronize data between multiple devices. Typical use cases are synchronizing
settings and data, and collaboration between multiple users. Such applications must preserve the
privacy and integrity of the user’s data without impeding or interrupting the user’s normal workflow
– even when the device is offline or has a flaky network connection.

From the programming perspective, availability along with privacy and security concerns pose
significant challenges, for which developers have to learn and use specialized solutions such as
conflict-free replicated data types (CRDTs) or APIs for centralized data stores. This work relieves
developers from this complexity by enabling the direct and automatic use of algebraic data types –
which developers already use to express the business logic of the application – for synchronization and
collaboration. Moreover, we use this approach to provide end-to-end encryption and authentication
between multiple replicas (using a shared secret), that is suitable for a coordination-free setting.
Overall, our approach combines all the following advantages: it (1) allows developers to design
custom data types, (2) provides data privacy and integrity when using untrusted intermediaries,
(3) is coordination free, (4) guarantees eventual consistency by construction (i.e., independent of
developer errors), (5) does not cause indefinite growth of metadata, (6) has sufficiently efficient
implementations for the local-first setting.
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1 Introduction

Today, the dominant software architecture for distributed applications is centralized. This
is true for a wide variety of application types, such as single user applications deployed
on multiple devices (e.g., calendars, notes, email, etc.), software that enables multi-party
collaboration (e.g., shared calendars, document editors, business workflows, etc.), and software
for autonomous systems with remote control and interactions (e.g., home automation and
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autonomous vehicles). Data is collected, managed, and processed in the cloud. Devices at
the edge – owned by individuals and companies – serve merely as gateways to the cloud.
Such an architecture has strengths, but also several weaknesses: It causes undue lost control
over data ownership and privacy, lack of offline availability, poor latency, inefficient use of
communication infrastructure, and waste of powerful computing resources on the edge.

To address these issues, local-first software design principles [25] call for “data confiden-
tiality and privacy by default” and “ultimate ownership and control” by the user – both to be
achieved by moving data storage and processing to the edge. However, developing local-first
applications is challenging. Crucially, suitable existing mechanisms for efficient decentralized
data management, specifically coordination-free replicated data types (CRDTs) [52], were
invented for the geo-replicated database setting, which differs significantly from the local-first
setting.

First, each local-first application has its own unique application-specific data model,
designed by developers to encode domain knowledge. Developers have to figure out how to
map application-specific data models to CRDTs, which are only available “off-the-shelf” in
the form of databases [50] or libraries with a fixed API [24, 37]. Designing application state
based on a fixed set operations is known to cause application design issues [11], because it
requires translation between the application domain model and the fixed set of operations.

Second, in a local-first setting, a diverse set of networks is used for state synchronization.
But general off-the-self CRDTs are designed for the geo-replicated database setting. The
assumed network has mostly available direct connections between replicas, i.e., systems
are designed to deal with seconds or minutes of latency between data centers. In contrast,
local-first replicas (on user devices) have varied network conditions, ranging from always
online devices, to personal computers that are turned off when unused, to mobile devices
that only synchronize data when connected to a Wi-Fi network. In such a setting, we cannot
assume direct connections between devices. Notably, this implies that connection oriented
security protocols (e.g., TLS) are not applicable. A common solution for such indirect
communication are cloud servers that act as intermediaries, i.e., as post offices that store,
manage, and forward messages – further complicating the network model.

Third, the geo-replicated and the local-first settings have different security assumptions.
Local-first applications often process personal data, with better data privacy and security
being a selling point to users of local-first software. Existing security efforts for CRDTs in
the geo-replicated setting [4] do not apply, due to weak attacker models and reliance on
encrypted direct connections. Specifically, communication over untrusted intermediaries must
not jeopardize the principles of local-first software, i.e., intermediaries must be unable to
inspect or modify application data.

To fill the gaps, we propose algebraic replicated data types (ARDTs) – algebraic data types
(ADT) that provide, by construction, provably consistent decentralized data management.
ARDTs are delivered as a library that integrates seamlessly with existing language support
for function composition and algebraic data types. Behind the scenes, ARDTs combine the
theory of consistency as logical monotonicity (CALM theorem) [12] with delta replication [2]
for efficient and correct synchronization. Moreover, ARDTs also offer an encryption layer for
efficient synchronization over untrusted intermediaries. Overall, ARDTs provide the ease
of development of traditional applications, the privacy advantages of local-first, with the
data sharing advantages of clouds – independent of the underlying network. We evaluate
the proposed ARDT-based design of local-first applications on a case study and with micro-
benchmarks. The results show that (a) typical local-first applications can be implemented
with negligible performance overhead compared to existing data synchronization and UI
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rendering costs, and (b) encryption comes with minimal computational costs and with
predictable, reasonable storage overhead on intermediaries.

In summary, our contributions are:
A critical analysis of the state-of-the-art in developing local-first applications (Section 2).
Use of standard ADTs suitable for application design for replication the realm of local-first
software (Section 3).
A novel synchronization-free authenticated encryption scheme, itself provided as an
algebraic replicated data type (Section 4). As part of designing the encryption scheme,
we contribute a systematic analysis of the suitability of existing encryption primitives for
decentralized synchronization protocols (Section 5).
An implementation of our proposal as an embedding into Scala along with a systematic
empirical evaluation (Section 6).

2 State of the Art and Problem Statement

Below, we discuss two families of existing approaches, which are relevant for our work: (a)
dedicated systems for collaborative workflows and (b) approaches to replicated data types
employed in geo-replicated data stores. We briefly introduce relevant and missing features
with respect to developing secure local-first software. We also introduce existing building
blocks for distributed systems programming, which we adopt and combine to exploit their
advantages in our setting.

2.1 Systems for Distributed Workflows
There are two kinds of systems for distributed workflows. The first kind has automated
handling of conflicts at the price of centralized coordination; prominent examples are
Google Docs or Firefox Sync. The other kind has flexible replication that does not rely
on centralization; the most prominent example is Git, which allows for replication via
different intermediaries including specialized ones like GitHub, or general ones like email.
Similarly, systems like Syncthing and Resilio Sync enable peer-to-peer file synchronization
in an arbitrary network topology, and even support encrypted intermediaries. But Git,
Syncthing, and Resilio Sync require manual user intervention for conflict resolution.

We aim for combining flexible and secure data synchronization à la Git with automated
conflict resolution à la Google Docs. Crucially, we aim to offer this combination to general-
purpose programs with unconstrained types of data. This is unlike the above solutions, which
target specific use cases and specific types of data. For example, Google Docs builds on
research around operational transform [54] to enable efficient synchronization specifically for
text documents. Such specialized solutions are infeasible for arbitrary local-first applications
from different domains. Adapting existing solutions would require developers to become
experts and understand the underlying assumptions and data models, or otherwise risk to
introduce errors into an adaptation.

2.2 Replicated Data Types in Geo-replicated Data Stores
Another class of solutions that are relevant for our purposes are those developed to enable
availability in geo-replicated data stores in the presence of network partitions – a scenario
that bears some superficial similarity with local-first software. In particular, the solution
from this context that is most relevant to the development of local-first applications are
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conflict-free replicated data types (CRDTs) [52]. CRDTs are data types, whose API consists
of a fixed set of query and update operators, which satisfy the condition that two replicas
that know of the same updates return the same result for all queries (also known as eventual
consistency). This property is key in supporting coordination-free synchronization. CRDTs
are typically built into a replicated data store with specific assumptions about the underlying
network for efficiency (e.g., availability of reliable causal broadcast, trustworthiness of the
involved servers).

The assumptions built into the design of off-the-shelf CRDTs limits their applicability to
local-first software development. First, application developers are left with not much choice
but to express their application design using the fixed APIs of existing CRDTs. A similar
approach – object-relational mappings in database-centric software – is known to be a leaky
abstraction, requiring frequent security relevant changes, and does not work well together
with language-based tooling [11]. Second, local-first software operates in varied network
scenarios for which there is no “one size fits all” solution to handle network communication.
Thus, some CRDT runtimes allow developers to provide a custom message dissemination
system that is specific to their needs. However, for two common network scenarios – using
a cloud provider to store and forward messages, and using epidemic routing in an ad-hoc
network – messages are not secure by default. Adding security burdens developers with
ensuring correct and efficient encryption of messages, a task that requires expert knowledge
of both the CRDT implementation and the network dissemination scheme to accomplish
correctly and efficiently.

To recap, local-first applications have multiple new challenging concerns including design
of the application state with replication-awareness, efficient dissemination of messages given
the target network topology, and security of exchanged data, considering that messages may be
stored for a long time before delivery. Each of these concerns needs both, system-level expert
knowledge and application-specific insight. It is too much to ask of application developers to
become experts in all of these fields. Thus, we must make expert implementations of system-
level concerns such as state synchronization, message dissemination over physical networks,
and security, available in a reusable and composable manner to application developers.

2.3 Building Blocks for Algebraic Replicated Data Types

Our solution builds on insights from previous research, but makes them reusable and
combinable by application developers.

CALM and lattices. The first result we exploit is the consistency as logical monotonicity
(CALM) theorem [21]. It states that consistency is possible without coordination if and only
if all replicas only add to (i.e., monotonically increase) but never invalidate prior results.
Existing solutions using replicated data types generally require all operations to prove (or
pray for) a correctness property related to monotonicity. For example, state-based CRDTs
require all operators to monotonically increase the state according to a specified order, and
operation-based CRDTs require all operators to commute with one another. However, as
we want to enable developers to define their own synchronization-free replicated data types
including new operations, it would be too easy for them to accidentally introduce consistency
bugs (i.e., design operations that are not eventually consistent). A constructive way to
enable consistency by-design, is to restrict available programming support to monotonic
functions [12]. But such an approach may be too restrictive and does not integrate well into
general-purpose languages.
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Our solution is based on join semi-lattices – a set of states (i.e., a data type) with an
associative, commutative, and idempotent merge function. In practical terms, associativity
ensures that states can be combined before transmission, commutativity tolerates disordered
arrivals of messages, and idempotence handles duplicated transmissions. Any (merge) function
⊔ with the above three properties provides monotonicity in the sense above, because it implies
an order on states: s1 ≤ s2 if and only if s1 ⊔ s2 = s2. Lattices have been used to reason
about correctness of CRDTs since their beginning [52], but our approach makes states and
merge functions directly available as building blocks for application developers.

Delta replication. We use delta replication [2] to separate efficient message dissemination
from the application logic. Delta replication is a variant on state-based replicated data
type design, where monotonic changes are expressed as a delta to prior state. The overall
application state results by merging all deltas (according to the lattice merge). The application
logic is free to generate deltas however it wants, and the message dissemination algorithm is
free to optimize the transmission of deltas for the specific networking platform.

Note that not every combination of lattice semantics and message dissemination provides
causal consistency (only eventual consistency). However, causal consistency always comes
at the cost of waiting for messages to arrive, and most local-first applications do not
require causal consistency. It is well understood how to add causal delivery to any message
dissemination scheme, and doing so is compatible with our results.

But delta replication does not tell how to add encryption transparently, i.e., without having
to adapt all existing message dissemination implementations (of which, each application may
have its own). In general, message dissemination in a local-first setting needs to consider
many application- and environment-specific interwoven concerns in addition to security.
Such concerns include causal delivery, importance of messages to the application logic, and
messages that become obsolete because of newer state changes. While we focus on security,
our approach is designed to be parametric over the dissemination strategy for deltas, and
thus enables customization.

Authenticated encryption with associated data. Local-first applications require confiden-
tiality – the guarantee that application private data can not be accessed by unauthorized
parties – and integrity – the guarantee that neither private data nor communication metadata
(the associated data) can be tampered with by an attacker. These guarantees are provided
by authenticated encryption with associated data (AEAD) [44], a family of cryptographic
solutions based on symmetric-key cryptography, where only trusted parties (in our case
replicas) have access to a single shared key. AEAD is well studied and widely used, e.g.,
in TLS 1.3 [43]. But each use of a cryptographic construction in a new field requires to
carefully select concrete implementations of cryptographic functions and to ensure that they
are executed with suitable parameters. The local-first setting is no exception in this respect.
Specifically, in local-first applications, an unknown number of replicas need to encrypt and
decrypt data using a single shared key. Widely available AEAD functions require a globally
unique number (nonce) as an input for each operation using the same key. Guaranteeing
global uniqueness requires coordination, which we need to avoid in the local-first setting.

3 Algebraic Replicated Data Types

The architecture of our solution is structured in three layers depicted as colored areas in
Figure 1. The layer on the left concerns algebraic replicated data types (ARDTs), which are
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Figure 1 Architecture overview.

used to model the application logic. The layer on the right concerns message dissemination
over physical networks; this includes sending messages (serialized deltas) and applying a
merge function to recombine received deltas into the full application state. Finally, the middle
layer concerns encrypted replication (encrypted ARDTs – encARDTs). We provide a library
with implementations of each layer. It includes ARDTs for common data types auch as set
and map, different encARDT implementations with different performance versus metadata
tradeoffs, and implementations for message dissemination over TCP, Websockets, WebRTC,
and disruption tolerant networks (DTNs). We expect that developers want to design new
ARDTs specific for their application logic. In doing so, they can freely combine different
implementations of each layer to address specific application needs. This section presents
how developers design their own ARDTs and configure it to use a message dissemination
module. Section 4 and Section 5 elaborate on encrypted ARDTs.

3.1 Programming and Replicating ARDTs
An ARDT is an (immutable) algebraic data type (ADT) of the host language (Scala in our
case) plus a set of associated operators. The ADT values represent the (lattice) state of the
ARDT. The values represent application data and, depending on the used lattice, may also
include metadata for automatic merging. Operators are functions/methods that operate on
an ARDT’s state. Operators may (i) just read the ARDT state to produce a value used
by the application, or (ii) produce a delta that describes the desired changes to the current
state. A delta is technically an instance of the ARDT, but it must first be merged into the
current state to become meaningful in the context of the application.

For illustration, assume that we want to implement a local-first social media application
to be used by a group of friends in a peer-to-peer network to share messages, comments, likes,
and dislikes. The ARDT in Figure 2 models the state and operators of such an application1.
The SocialMedia type (Line 1) is defined as a product type with named components (a
case class in Scala). SocialMedia wraps a Map (Scala’s built-in dictionary type) of IDs to
values of type SocialPost (Line 6 – type parameters are in square brackets). A social post
uses the built-in type Set for comments, two Counters for likes and dislikes, and a LWW
(last-writer-wins) register for the post and comment contents. The LWW register is a built-in
ARDT provided by our library that can be set to a new value, with the implication that
all replicas will show the newest value according to a real-time clock. Counter is an ARDT
defined in Figure 3.

The operators of ARDTs implement their application logic. While Counter (Line 7) and
SocialMedia (Line 1) are both wrappers around a Map, their operators make the difference.
Each Int stored in the Map of the Counter ARDT represents an individual amount contributed

1 All code examples in the paper use Scala 3 syntax.
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1 case class SocialMedia (sm: Map[ID , SocialPost ]):
2 def like(post: ID , replica : ReplicaID ): SocialMedia =
3 val increment = sm(post).likes.inc( replica )
4 SocialMedia (Map(post -> SocialPost (likes = increment )))
5

6 case class SocialPost ( message : LWW[ String ], comments :
Set[LWW[ String ]], likes: Counter , dislikes : Counter )

Figure 2 Compositional design of the social media ARDTs.

7 case class Counter (c: Map[ReplicaID , Int ]):
8 def value: Int = c. values .sum
9 def inc(id: ReplicaID ): Counter =

10 Counter (Map(id -> (c. getOrElse (id , 0) + 1))
11

12 object Counter : // object for static methods
13 def zero: Counter = Counter (Map.empty)

Figure 3 The state and operators of a counter ARDT.

by the specific ReplicaID. This is expressed by the value operator (Line 8). A zero counter is
expressed by the empty map (Line 13). Like other immutable data structures, operators that
modify ARDTs return a new state, e.g., inc (Line 9) increases a counter by returning a new
counter. But for ARDTs it is sufficient to return a delta – the changed parts of the state –
the rest is managed automatically by applying the merge function. For instance, inc (Line 9)
returns only the entry with the increased values; unchanged entries in the Map are omitted.
The like operator of the SocialMedia ARDT in Line 2, while being a bit more complex, follows
the same pattern. To “like” the post with the given ID, it computes the increment of the
likes counter (Line 3) and returns a new delta of the SocialMedia state, which contains only
the changed ID and defines only the likes component2 of the social post (Line 4). Returning
deltas is preferable, because it is more efficient to send and merge smaller values. But since
merging is idempotent, developers could also return full states without impacting behavior.

In the examples so far we assumed that a merge function for our ARDTs exist. This is
indeed the case, because all built-in types we used have merge functions provided off-the-shelf
by our library, and the user-defined ADTs (SocialMedia, SocialPost, and Counter) have their
merge function automatically generated. For example, the merge functions for Counter and
SocialMedia keep all entries of both maps and (recursively) merge the values that have the
same key; and the merge function of the SocialPost merges each component individually. See
Subsection 3.2 for the precise definition of these merge functions. In general, the availability
of a merge function for a type S (e.g., Counter or SocialMedia) is modeled by the type class
Lattice[S] below.

14 trait Lattice [S] { def merge(left: S, right: S): S }

2 The syntax that looks like an assignment in Line 4 is a named parameter, and we assume that this
constructor sets all other components to “empty” values (not shown in the example for brevity). The
-> operator constructs a key-value pair.
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15 class MessageDissemination [S]:
16 def send(delta: S): Unit
17 def recombine (using Lattice [S]): S

Figure 4 Example message dissemination module.

18 val smd = new MessageDissemination [ SocialMedia ]
19 val current : SocialMedia = smd. recombine
20 val delta: SocialMedia = current .like(myPost , replicaID )
21 smd.send(delta)
22 val updated : SocialMedia = smd. recombine

Figure 5 Using and replicating the social media ARDT.

Specifically, we say that S is the state of an ARDT, when there exists a correct instance
of Lattice[S]; an instance is correct if its merge function is associative, commutative, and
idempotent. The correctness of the merge function is the only requirement for eventual
consistency in our system, and we do not want to burden developers with its definition. Thus,
our library comes with a broad range of built-in ARDTs (with state, operators, and merge
function). Moreover, correct instances of Lattice for standard data structures, user-defined
product types, and the compositions of all of the above, are automatically generated. The
system produces a compilation error if no lattice instance for a custom type can be generated.
In other words, eventual consistency is always guaranteed automatically.

We put ARDTs into action by composing them with a concrete message dissemination
module. The API of the message dissemination module is shown in Figure 4. It allows to
send and recombine a replicated state of type S (Line 15)3. The send method (Line 16) sends
a delta message of type S. The recombine method (Line 17) merges all received delta messages
into a full state of type S, which requires a Lattice[S]. The using keyword (Line 17) asks
the compiler to provide such an instance automatically if available, or report a compilation
error. Figure 5 shows how to use and replicate the social media platform. Line 18 creates
a MessageDissemination named smd. We access the current state of social media (current)
using recombine (Line 19). To like a post named myPost, we first apply the like operator on
current to compute the delta state.4 Once we send delta (Line 21), the like is merged into the
rest of social media, and we can access the full updated state by calling recombine (Line 22).

3.2 Lattice Composition
By design, the correctness of both the operators and the distributed consistency of ARDTs
rely exclusively on their state forming a lattice, i.e., on having a correct merge function.
We provide ready-to-use Lattice instances for a range of data types such as last-writer-wins
registers, multi-version registers, and lists (RGA). We have implemented those based on
existing schemes for state-based CRDTs [51, 2]. On top, our library supports automatic
generation of merge functions for compound data types including associative maps, pairs,
tuples, optional values, and user-defined case classes (generally all product types), given their

3 This supports multiple ARDTs by composing them into a single type S.
4 Note that while delta is of type SocialMedia, it only contains that single like.



C. Kuessner, R. Mogk, A. Wickert, M. Mezini 8:9

23 given Lattice [Int] with
24 def merge(left: Int , right: Int): Int = max(left , right)

Figure 6 Lattice instance for integers using their maximum.

25 given [A]: Lattice [Set[A]] with
26 def merge(left: Set[A], right: Set[A]): Set[A] = left union

right
27

28 case class LWW[A]( time: Time , value: A)
29 given [A]: Lattice [LWW[A]] with
30 def merge(left: LWW[A], right: LWW[A]): LWW[A] =
31 if right.time < left.time then left else right

Figure 7 Set and last-writer-wins lattice.

constituents are ARDTs (i.e., have a lattice instance)5. For example, SocialPost’s merge is
automatically generated from its constituent types, Set, Counter, LWW. The generation is
recursive with pre-defined ARDTs (e.g., LWW) being the recursion anchors.

The generation for product types exploits the canonical representation of a compound
data type as a function (e.g., a key-value map is a function from keys to values). The merge
of two functions l and r is a new function f that merges the result of applying l and r

(f(x) = merge(l(x), r(x))). Sum types (i.e., types representing alternatives such as colors:
red, green, blue) either use built-in lattice instances, or use an explicitly specified order of
the cases (e.g., red < green < blue) and merging returns the larger case.

In the following, we elaborate on how concrete lattice instances are defined for different
ARDTs starting with the recursion anchors and ending with automatic derivation of instances
for compound data types.

3.2.1 Provided and Custom Lattice Instances
We provide ready-to-use lattice instances for primitive data types and for common CRDTs.

For example, the code in Figure 6 implements lattice instances for integers. The given keyword
defines an unnamed instance of Lattice[Int]. The with keyword states that the following is
the implementation of the Lattice methods, in this case, the implementation of merge as the
application of the max function. This definition uses Scala’s support for implicit values to
seamlessly integrate ARDTs into the rest of the language. Methods can access an instance
with the using keyword (as seen in the recombine method from Figure 4); the developer does
not need to explicitly provide the instance, when the method is called.

Figure 7 shows lattice instances for sets and last-writer-wins registers. Merging sets is
delegated to the existing union method on sets. LWW is a custom type, whose state associates
a unique timestamp and a value. Its merge function makes an arbitrary but deterministic
decision – it selects the state with the larger timestamp and ignores the other one.

We do not expect developers to define their own merge functions. It is possible to do so,
by providing custom lattice instances, but carries the risk of an incorrect implementation.

5 This is not unlike Haskell’s support for deriving instances of type classes for compound data structures.
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32 given [K, V]( using Lattice [V]): Lattice [Map[K, V]] with
33 def merge(left: Map[K, V], right: Map[K, V]) =
34 left. merged (right){
35 case ((id , v1), (_, v2)) => (id , Lattice [V]. merge(v1 , v2))
36 }

Figure 8 Map lattice.

Instead, our library provides support to automatically derive lattice instances for custom
ADTs, as elaborated in the following sections.

3.2.2 Derived Lattice Instances

Deriving lattices for a compound type makes use of lattices of its component types. Technically,
this is represented as given instances that take other instances as parameters. In the following,
we present how to derive lattices for generic map and product types. The appendix includes
proofs of their correctness by showing that the respective merge functions are commutative,
associative, and idempotent.

The map lattice. Figure 8 states how any Map[K, V] has a lattice instance, if its values V
also have a lattice instance. Specifically, the using keyword states that to create the lattice
instance for the map we require a Lattice[V] where V is the type of values stored in the map.
The merge function (Line 33) for a map delegates to the built-in merged function of Map
(Line 34). The built-in merged function does not automatically handle the case when a key
is assigned to value in both the left and the right map and requires a custom function to
handle such conflicts. We implement this function to delegate to the merge function of the
value type provided by Lattice[V] (Line 35). We prove correctness of this merge function in
Appendix A.1.

The product lattice. We support automatic generation of lattices for any product type
whose elements themselves have lattice instances. In Scala, product types include tuples and
case classes. Consider the exemplary case class MyData in the first line of the code snippet
below, and an explicit definition of the automatically generated lattice instance in the second
line.

37 case class MyData (a: A, b: B)
38 given Lattice [ MyData ] = Lattice . derived [ MyData ]

The derived method generates a lattice instance for any product type S. Its implementation
is shown in Figure 16 (in the Appendix). At a high-level of abstraction, a lattice instance
for a product is generated as follows. (i) Acquire lattice instances for each component of
the product. (ii) Define the merge function for two instances of the product type (a left
and a right one) to (iii) take each component of the left product and merge it with the
corresponding component of the right product and (iv) return the results wrapped in a new
instance of the product.

We give the full technical details of the implementation in Appendix A.2. We prove
correctness of the merge function for arbitrary products in Appendix A.3.
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3.3 Qualitative Assessment of Design Features

We recap key advantages and limitations of our approach to defining and using ARDTs.

Reused implementations. When designing a new ARDT, expert developers can reuse
any existing data structure, as long as they can define a merge function. For instance, the
Map data structure in our social media ARDT is a highly optimized implementation from
the Scala standard library. But developers are not limited to the options in our library
and are free to choose an implementation that best suits their needs. For instance, there
are multiple implementation strategies for sets to chose from, including sorted trees and
hash-based solutions. The decision about the particular data type to use for representing the
state of custom ARDTs is decoupled from and does not affect consistency management. Our
approach enables to reuse existing off-the-shelf CRDTs by providing a suitable lattice instance.
State-based CRDTs have a correct merge function, which we can and have directly used
for this purpose. Operation-based CRDTs can be systematically converted to state-based
CRDTs [52], thus they can be reused, too.

Unified consistency management. The CALM theorem [21] implies that monotonicity
is a necessary requirement for consistency without coordination. To achieve monotonicity,
existing state-based CRDT implementations [52] require that operators return a state that is
larger than the original one (with respect to a pre-defined order of all possible states) and
operation-based CRDTs require operators to be commutative. In contrast, our approach
automatically enforces monotonicity of operators by merging their delta result with the
current state. Thus, application developers do not need to reason about consistency when
designing operators. The potential for introducing consistency bugs is limited to custom
merge functions, which we assume to be designed by experts.

To illustrate the positive effects of this, consider again the Counter ARDT in the social
media application. We only have to ensure that operators implement the intended application
semantics, but we are always guaranteed consistent results. That is, the developer may
make a mistake and the increment operator does not increment the value of the counter, as
it is supposed to do. But it is guaranteed that the operator exhibits the same (erroneous)
behavior on all replicas. This is in contrast to classic CRDTs, where an incorrect operator
may lead to different states on different replicas. Due to unified consistency, distributed
correctness boils down to correctness of a single replica, i.e., we get along with local reasoning,
which simplifies development and testing.

Finally, since correctness relies exclusively on the properties of the merge functions,
reasoning about consistency and ensuring it automatically is greatly simplified. An indi-
cation for this are the proofs (in the Appendix) for generated merge functions presented
in Subsubsection 3.2.2. First, they are of manageable size. Second and more importantly,
one can prove the correctness of individual merge functions independently of other merge
functions and operators, because they do not rely on any global assumptions. Correctness
for all composed data types then follows automatically from the individual proofs.

Versatile message dissemination. Local-first applications may run on diverse communi-
cation infrastructures, especially when considering various potential intermediaries ranging
from a centralized server, to a shared network disk, to passing data along multiple ad-hoc
Wi-Fi connections, to storing messages on a USB drive and sending the latter via physical
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mail.6 Even though concrete strategies for message dissemination are not a focus of our
contributions, our assumptions about message dissemination are explicitly designed to admit
many different such strategies. Moreover, the separation of message dissemination from
ARDTs enables independent improvement of separate concerns. Specifically, in Section 4, we
thoroughly explore secure communication that works in any setting. On the other side of
the spectrum, in Section 6, we also explore possible optimizations of message dissemination
in less challenging environments such as a central server.

Limitations. According to the CALM theorem [21], coordination-free consistent replication
schemes can only express algorithms that do not require consensus. This is true for ARDTs,
too. Even though we support arbitrary code to express operators, the deltas produced by
operators are merged back into the current state, which enforces that the actual change to
the state is monotonic. For example, a decrement operation on the counter ARDT (Figure 3)
could produce a delta that decrements one of the integer values in the counter. However,
because merging integers (Figure 6) returns the maximum, such a delta has no effect when
merged into the current value.

4 Encrypting ARDTs

The design of ARDTs is motivated by the need for a flexible encryption mechanism suited
for local-first applications. In particular, encryption should be independent of the message
dissemination mechanism to provide the same guarantees in any network scenario. Moreover,
the encryption should enable efficient storage of encrypted data on untrusted intermediaries.

Our solution provides encryption as a special kind of ARDTs, called encrypting ARDTs
(encARDTs in the middle of Figure 1). EncARDTs are normal ARDTs for all purposes –
they can be replicated using any message dissemination mechanism, and they can be parts
of composed ARDTs. EncARDTs provide encryption via their operators, specifically, they
implement the message dissemination API (send and recombine) where sending encrypts
and recombine decrypts the state.

For example, a naive implementation of an encARDT is shown in Figure 9. Line 41
defines the state of the encARTD as a set of encrypted values. For encryption, we rely
on authenticated encryption with associated data (AEAD) to ensure confidentiality of the
state and integrity of both the state and the metadata. There are multiple encryption
primitives that provide AEAD, and we elaborate on the challenge of correct use of AEAD
in a coordination-free setting in Section 5. For now, we assume that there exists a suitable
AEAD module with the following interface.

39 def encrypt [S, A]( data: S, meta: A, key: Secret ): AEAD[S, A]
40 def decrypt [S, A]( aead: AEAD[S, A], key: Secret ): Option [(S, A)]

The naive encARDT in Figure 9 stores values of type AEAD. We generally refer to
encrypted states as messages to distinguish them from the state of the encARDT itself. The
send operator (Line 42) adds new messages into the encARDT, by using the encrypt method
of the AEAD module, and producing a delta containing the message. This delta is handled
as usual, i.e., it is merged into the current state using the automatically derived merge

6 Networks, where messages are not exchanged directly, but rather stored and forwarded until they are
eventually received, are called delay-tolerant networks (DTN) [5]). They are actively developed and
researched to enable resilient communication [53, 48, 5, 6], a highly relevant area for local-first software.
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41 case class Naive[S]( messages : Set[AEAD[S, Unit ]]):
42 def send(data: S, key: Secret , rID: ReplicaID ): Naive[S] =
43 Naive(Set( encrypt (data , (), key)))
44 def recombine (key: Secret )(using Lattice [S]): Option [S]=
45 messages . flatMap (aead => decrypt (aead , key)).map(_.data)
46 . reduceOption ( Lattice [S]. merge)

Figure 9 Naive encARDT stores all states.

47 case class Subsuming [S]( messages : Set[AEAD[S, Version ]]):
48 def version : Version = messages .map(_. metadata )
49 . reduceOption ( Lattice .merge[ Version ])
50 . getOrElse ( Version .zero)
51 def send(data: S, key: Secret , replicaID : ReplicaID ) =
52 val cause = version merge version .inc( replicaID )
53 Set( encrypt ( recombine (key) merge data , cause , key))
54

55 given [S]: Lattice [ Subsuming [S]] with
56 def merge(left: Subsuming [S], right: Subsuming [S]): Subsuming [S]=
57 val combined = left union right
58 combined . filterNot (s =>
59 combined . exists (o => s. metadata < o. metadata ))
60

61 extension [S] (c: Subsuming [S])

Figure 10 Subsuming encARDT based on version data.

function. The recombine operator (Line 44) reconstructs the plaintext ARDT state of type S.
To do so, all messages are processed by the decrypt method (Line 45), whose return value
for authentication failures makes flatMap discard that message. The successfully decrypted
messages are merged pairwise using the lattice of the plaintext ARDT Lattice[S].

Consistency of the naive encARDT directly follows from the automatic construction of the
merge function, because we only ever add new messages. However, storing all messages forever
is a naive solution, because the state grows indefinitely. Yet, the naive encARDT represents
the realistic case where an intermediary has no further information about encrypted messages.
The following sections describe how to fix the indefinite growth of required space by using
associated metadata.

4.1 Pruning Subsumed States
The naive encARDT stores messages even if they are no longer relevant. As an example why
this is problematic, consider the counter ARDT. The counter stores an integer per replica ID,
each time a counter is incremented we store the new value and no longer need the old value
for that replica ID. In such cases, we say that the old state is subsumed by the new state.
Formally, a state s′ subsumes another state s, if s′ contains all updates of s, i.e., s ⊔ s′ = s′

(where ⊔ is the merge function).
The subsuming encARDT attaches logical timestamps [28] in the form of version vec-

tors [10] to messages as associated metadata. Version vector metadata provides an order ≤
on encrypted states e(s) that implies subsumption: e(s) ≤ e(s′) =⇒ s ⊔ s′ = s′. This allows
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63 case class Dotted [S]( messages : Set[AEAD[S, (Dot , Set[Dot ]) ]]):
64 def send(data: S, key: Secret , replicaID : ReplicaID ) =
65 val cont = messages . flatMap (aead => decrypt (aead , key))
66 val sub = cont. filter (s =>
67 Lattice [S]. merge(s.data , data) == data)
68 . flatMap (s => dotsIn (s. metadata )).toSet
69 Set( encrypt (data , (Dots.next( replicaID ), sub), key))

Figure 11 Dotted encARDT – precise subsumption.

intermediaries to remove subsumed messages without inspecting their contents. Figure 10
shows the implementation of the subsuming encARDT, whose messages include the Version
as associated metadata for the encrypted states. A version vector is semantically a counter
CRDT, and Version uses the implementation from Figure 3, but is renamed to reflect its use
within the subsuming encARDT.

The operators of the subsuming encARDT automatically add the correct metadata to
messages. The helper method version (Line 48) merges all currently stored versions, thus
returning the upper bound of all versions. The send operator increments the upper bound of
versions (Line 52), implying that the new message subsumes all existing messages, but is
not subsumed by any of them. To ensure this is true, the delta state to be send (data in
Line 53) is merged with all current values in the encARDT, thus producing a full state that
does contain all others. The recombine operator is the same as for the naive encARDT in
Figure 9, hence not shown.

An explicit lattice instance implements subsumption as part of the merge function
(Line 55). After computing the union of the sets of encrypted states (Line 57), the merge
keeps only the states that are not subsumed by another state (Line 58); formally the kept
states are {e(s)|∄e(s′) : e(s) < e(s′)}.

For an intuition to how a subsuming encARDT behaves, consider that a message subsumes
all messages that are currently stored in the encARDT, and the merge function removes all
subsumed messages. Thus, each time a replica sends a message, only that message (containing
all deltas) is stored. However, when multiple untrusted intermediaries synchronize between
each other, each may store multiple incomparable messages (generated by different replicas),
and merging will keep all of these messages until a trusted replica decrypts and merges them.

In Appendix A.5, we prove that the subsuming encARDT is transparent, i.e., sending and
recombining behaves as if we just merge states without encryption, and without removing
them based on subsumption metadata. This proof includes correctness of the custom merge
function (associative, commutative, idempotent).

4.2 Pruning Encrypted Deltas
With the subsuming encARDT, we lose the advantages of delta replication, because it
combines all deltas into a single state when sending a message. To address the problem,
dotted encARDT in Figure 11 store precise per-delta subsumption information in the metadata.
Specifically, the metadata contains (a) a globally unique logical timestamp for the message,
called a dot [40], and (b) the set of dots that the message subsumes. The send operator
computes the set of messages currently contained (cont in Line 65) in the dotted encARDT.
For each contained message, it uses the merge function (Line 67) to check if it is subsumed
by the new message. Subsumption is transitive, thus the new subsumption info combines
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all dots in the metadata of all subsumed messages (sub in Line 68). Finally, the message
containing only the delta (data) and subsumption info is returned (Line 69). The other
methods (including the merge function) of the dotted encARDT are the same as for the
subsuming encARDT, thus are not shown.

With dotted encARDTs, intermediaries still cannot decide if two concurrent messages
from different trusted replicas subsume one another, but the messages are potentially much
smaller compared to the subsuming encARDT. However, dotted encARDTs require more
metadata, thus use more space when no concurrent messages occur. See Section 6 for an
empirical evaluation, but keep in mind that the best choice is highly dependent on the used
ARDTs and application behavior. It is possible to use different encARDTs for different
ARDTs in the application, thus providing maximum flexibility. Correctness proofs for the
dotted encARDTs are analogous to the subsuming encARDT, because using a more precise
notion of subsumption only strengthens the preconditions of the proof.

4.3 Security Assessment
We have presented three different encARDT strategies that cover different points in the
design space. Assuming that only trusted replicas know the shared secret, and that AEAD
protects data confidentiality and authenticity of the contained messages, all encARDTs
prevent the following attacks. Intermediaries cannot tamper with the order of data, because
recombination is order independent. Replay attacks using duplicated messages also have no
effect, since merging is idempotent. Intermediaries can forge new messages using incorrect
keys, but these are ignored when decrypting. The only way for intermediaries to interfere is
to selectively stop disseminating messages to (some or all) replicas – this is not worse than
the scenario where the intermediary did not exist.

Encrypted communication may still leak information, e.g., the size of messages, and
who sends which message at what time. In addition, different encARDTs have different
tradeoffs. The naive encARDT leaks no metadata, but stores unneeded messages. The dotted
encARDT is as precise as possible, but also leaks precise subsumption metadata. Subsuming
encARDTs are in the middle. They leak the order of messages, which can be learned anyway
by an attacker that can observe the overall network (a common threat model), while still
enabling to remove unneeded messages.

Leaking metadata is considered as unproblematic when synchronizing rich data such
as texts and images, because the contained data is not deducible by the order in which
modifications happened. But it can be problematic for certain simple ARDTs, e.g., in
the case of Counter (Figure 3), which has a single operation, one can deduce the current
values by learning the number of messages. But these issues are not unique to our solution,
and countermeasures exist [20, 56]. Moreover, because encARDTs do not require a central
entity, it becomes easier to apply countermeasures. For example, one can split messages
over multiple intermediaries (hence, no single intermediary may learn all metadata), or can
use randomized routing such as TOR [13], because ARDTs are resilient against unreliable
message delivery.

5 Coordination-free Encrypted ARDTs

The discussion in the previous section leaves out one open challenge: AEAD primitives
require each call to the encrypt method to use a globally unique number (nonce). In general,
ensuring global uniqueness of something requires coordination, which contradicts our goal
to support coordination-free synchronization. Thus, the open question is how to guarantee

ECOOP 2023



8:16 Algebraic Replicated Data Types: Programming Secure Local-First Software

Java Web libsodium Tink
AES-GCM • • • •

AES-GCM-SIV •
ChaCha20-Poly1305 • • •

XChaCha20-Poly1305 • •

Figure 12 Overview of supported AEAD modes in various environments.

global uniqueness while practically avoiding coordination. To answer this question, we are the
first to analyze multiple stochastic methods of selecting unique numbers for their suitability
for the local-first setting.

5.1 The Study Setup
Existing solutions vary in different respects: their availability, the number of replicas that are
securely supported, the number of operations that can be executed without coordination. The
goal of our analysis is to delimit the chances for conflicts within common security standards.

We considered the following AEAD constructions: AES-GCM, AES-GCM-SIV, and
(X)ChaCha20-Poly1305. Figure 12 shows their availability in the Java Cryptography
Architecture7, Web Cryptography API8, libsodium9, and Tink10. All libraries support AES-
GCM due to its use in the TLS specification [43]. The more modern AEAD construction
ChaCha20-Poly1305 was introduced in TLS 1.3 [43] and is currently also supported by
all libraries except Web Cryptography API. XChaCha20-Poly1305 [3] is an adaption of
ChaCha20-Poly1305 with a larger nonce-size and proven to be at least as secure [7]; while not
yet standardized by IETF, it is supported by libsodium and Tink [3]. AES-GCM-SIV [19]
(implemented only in Tink) claims resistance to nonce reuse; it is also not standardized.

In summary, the best available options are:
AES-GCM Use a 64 bit random ID per replica and 32 bit replica specific counter as nonces.

Supports up to 92,000 replicas, communicating once per second for 132 years.
XChaCha20-Poly1305 Use fully random 192 bit nonces. Supports 232 replicas for communi-

cating once per millisecond for 8900 years.
Our implementation defaults to XChaCha20-Poly1305, because it allows to completely hide
the use of nonces from the developer. In the following, we elaborate on how we reached the
conclusion that the above solutions are the best available options.

5.2 Coordination-free Generation of Nonces for AEAD
To encrypt and authenticate a message, AEAD schemes generally require three inputs: the
message, the encryption key, and a nonce [45]. A nonce is a number that must only be
used once together with the same key. If a nonce is used multiple times, then encryption
schemes leak information about the plaintext, e.g., in AES, an attacker learns the bitwise
exclusive-or of messages [31]. The Nonce misuse has lead to severe real-world attacks, e.g.,
on TLS [9] and WPA2 [57]. The issue is that the decision on how to choose nonces is left
to the developer, and, unfortunately, previous research on crypto misuses has shown that

7 https://docs.oracle.com/en/java/javase/16/security/
8 https://www.w3.org/TR/WebCryptoAPI/
9 https://libsodium.org/
10 https://developers.google.com/tink

https://docs.oracle.com/en/java/javase/16/security/
https://www.w3.org/TR/WebCryptoAPI/
https://libsodium.org/
https://developers.google.com/tink


C. Kuessner, R. Mogk, A. Wickert, M. Mezini 8:17

developers struggle with secure choices for crypto APIs [27, 36, 41]. This is not surprising,
considering that libraries like the Web Cryptography API do not even document that nonces
should be unique. Ensuring uniqueness is a classical coordination problem. Thus, we discuss
how to select unique nonces without coordination, while staying within generally accepted
levels of certainty for the provided confidentiality.

5.2.1 Selecting Nonces by Space Partitioning
A textbook approach to ensure uniqueness of nonces is using a strictly monotonic counter [14].
This is the case for AEAD algorithms in TLS 1.3 [43]. Using a single counter for all replicas
is not possible without coordination, since this is a prime example of mutual exclusion. An
adaption of the counter approach is to partition the nonce space into multiple ranges, each
exclusive to a single replica. This strategy requires coordination only once per replica. Fixed
ranges are a good choice for a set of devices provided by a single authority (a single user or
company). In large groups of loosely cooperating devices, however, deterministic coordination
of non-overlapping nonce ranges is infeasible. An alternative approach is cryptographically
secure pseudorandom number generation (CSPRNG).

Using replica IDs for partitioning. Certain ARDTs such as the counter (Figure 3)
already require replica-specific IDs for their behavior. Therefore, it seems intuitive to reuse
the replica ID to partition the space of nonces. If the chance of collisions of any two replica
IDs is small enough to be negligible, this is a secure choice. In general, to ensure uniqueness,
typical examples for replica-IDs are randomly generated UUIDs (as seen in automerge11), or
a hash of a replica-specific public-key [24], with the size of such identifiers usually being 128
bits [29]. Unfortunately, this size is too large for use with popular AEAD constructions. For
example, the NIST specification for AES-GCM recommends that implementations should
restrict their nonce lengths in AES-GCM to 96 bits [14]. Thus, direct use of replica IDs to
partition the nonce space is not possible.

Using small random replica-specific numbers for partitioning. Instead of using
the replica ID, we can generate short replica-specific numbers using a CSPRNG, but this
leaves us with a probability of collisions of replica-specific numbers, thus a collision of
nonces. According to the NIST specification, the probability that a nonce is reused for
a given key must be less or equal to 2−32 [14]. Considering the birthday paradox [49],
there is a surprisingly high probability that two replicas choose the same replica-specific
number. With a 64-bit long replica-specific number, we can have 92,000 replicas before the
collision probability reaches over 2−32. Assuming 92,000 replicas are sufficient, and given the
explicit 96-bit nonces of AES-GCM, a 64-bit replica-specific number leaves room for 32-bit
replica-specific counters. This provides 232 ≈ 4.3 × 109 messages to each replica. Assuming
that a replica encrypts one message per second, the counter could be used for 136 years,
before requiring coordination to select a new shared secret. This is a realistic choice for
local-first applications, when only AES-GCM is available.

5.2.2 Selecting Fully Random Nonces
A fully coordination-free approach to nonce generation is to rely on a CSPRNG to generate
a new random nonce for each message. Literature warns against random nonces in some
cases [9]. For example, nonces in TLS (using AES-GCM) consist of 32-bit part specific to

11 https://github.com/automerge/automerge
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the sender and connection, and a 64-bit part to ensure uniqueness [46]. With 64-bit random
nonces the collision probability after encrypting 228 ≈ 2.7 × 108 (three hundred million)
messages would be around 0.2 % and for 232 ≈ 4.3 × 109 messages around 39 % [9].

For using 96-bit random nonces with AES-GCM, the libsodium documentation recom-
mends against it [30], while the documentation of Tink recommends it for “most uses” [17].
Specifically, Tink guarantees that AES-GCM with random nonces can be used for at least
232 ≈ 4.3 × 109 messages, while keeping the attack probability smaller than 2−32 [17].

This, however, is a global message limit, i.e., counting all messages encrypted by all
replicas using the same key. The only way to enforce this limit without coordination is to
restrict the number of distinct messages to 232

n , where n is the maximum number of replicas
that can use a single key. Thus, further limiting the number of encrypted messages. Assuming
1024 as an upper bound on the number of replicas, this leaves 232

1024 = 222 ≈ 4.2×106 messages
to each replica. Or, in other words, 7 weeks of coordination-free operation using one outbound
message per second for each replica. Moreover, enforcing a limit on the number of replicas
also requires coordination.

Fortunately, random nonces become practical with the very large nonce sizes supported
by XChaCha20-Poly1305 [3]. The use of 192-bit nonces allows 280(≈ 1024) messages to
be encrypted with a nonce collision probability of 2−32 [3]. Putting this in context: If
every possible of the 232 IPv4 devices is encrypting messages at the rate of one message per
millisecond, this leaves us with over 8900 years before we must rotate keys. Therefore, with
random nonces, we only recommend XChaCha20-Poly1305.

5.2.3 Nonce Misuse-resistant AEAD Schemes

Nonce misuse-resistant authenticated encryption schemes, such as AES-GCM-SIV [19], aim
to be secure even when a nonce is reused for the same key with a different message. Thus, in
theory, they are good candidates for use with shared, long-lived keys. But these schemes also
do have bounds on the number of messages that can be safely sent [22]. Moreover, they are
not yet standardized and fully scrutinized, and, as discussed in Figure 12, an implementation
of AES-GCM-SIV is not widely available; thus, we can not give clear recommendations.

6 Evaluation

In our interim qualitative assessments, our focus was on design considerations in Section 3
(e.g., reusability, flexibility, correctness) and security guarantees in Section 4 and Section 5.
The question remains: What is the cost of the properties of our approach featured in the
qualitative assessments. To assess this cost, we empirically evaluate our approach along the
following research questions:

RQ1: Is the performance of ARDTs – including encryption – good enough for use in
local-first applications?
RQ2: Are the space requirements of ARDTs using intermediaries acceptable?

We use two methods to explore each of these questions: A concrete case study that makes
specific choices about the used ARDTs and a set of microbenchmarks that explore encARDTs
more generally to uncover their behavior in multiple dimensions, in particular the overhead
caused by encryption and intermediaries. The implementation is part of the REScala project,
and all implementations and benchmarks – in addition to further case studies that explore
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different scenarios – can be found on the project website12. The case study evaluated here
runs on the JVM (using a JavaFX UI) due to the generally better availability of tooling for
empirical evaluation, but our approach works for both the JVM and on the Web platform
(integrating with various Scala-based Web UI frameworks). Unless otherwise noted, we use
the following hardware and software setup for this evaluation.
CPU 2015 Intel Core i7-6700HQ (laptop CPUs are the most common for local-first software).
OS Arch Linux (Linux 5.16.16).
JRE We use the Java runtime OpenJDK 17.0.3.
Microbenchmarks For performance microbenchmarks, we use JMH13 the standard Java

benchmarking tool. The time measurements we conduct have very stable runtime behavior,
with a maximum relative error of 3%, thus we do not show error bars.

Libraries AEAD implementations are provided by Tink 1.6.114, which uses hardware accel-
eration for AES variants, but not for XChaCha20-Poly1305. To serialize states, we use
jsoniter-scala15 (the arguably fastest JSON serializer available on the JVM16).

6.1 Case Study
We implement the popular to-do list example as a JavaFX GUI application. The application
manages a list of to-dos, and the user may add entries containing arbitrary text, mark to-dos
as completed, change their text, or delete to-dos completely. Its correctness and consistency
properties are: added to-dos remain until deleted, and all users see the same to-dos in
the same order. The interactions and properties of the case study touch on most of the
complexity in the design space of local-first applications. Furthermore, the state of the to-do
list – a potentially ordered set of changeable entries – is complex enough to demonstrate the
need for composed data types.

We experienced no limitations in implementing the to-do list application with ARDTs and
encARDTs. The prototype makes heavy use of the composability of ARDTs. Concretely, the
to-do list uses an add-wins last-writer-wins map for its primary state. This is a composition
out of a tombstone-free add-wins set [8] and a last-writer-wins register. When two users
edit the same to-do entry, a deterministic decision keeps one of the edits and the other is
discarded. Changes to the primary state are normally triggered by the UI library (e.g., a
button click handler), but the UI is replaced by our benchmark infrastructure. The handlers
for each change are similar to the example in Figure 5. Each handler uses a corresponding
operator on the to-do entries (the add-wins-last-writer-wins map) to compute the delta of
the new application state. The delta is passed to the send operator of the dotted encARDT,
and the operator computes its own delta that is in turn passed to the message dissemination
implementation (a custom one for benchmarking the transferred data). In addition, there is
a notification API (not discussed in the paper) in the message dissemination module that
executes a handler whenever a change happens (caused locally or remotely), which triggers
the UI to update and show the new state.

To answer our research questions, we run a deterministic simulation of the to-do list. Our
simulation uses a single intermediary and simulates a total of one million operations that add,
modify, and remove to-do entries (see Subsection 6.2 for a discussion of concurrent operations

12 www.rescala-lang.com
13 https://openjdk.java.net/projects/code-tools/jmh/
14 https://developers.google.com/tink
15 https://github.com/plokhotnyuk/jsoniter-scala
16 https://plokhotnyuk.github.io/jsoniter-scala/
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and multiple intermediaries). A million operations correspond to about 11 days of usage,
with an interaction per second. We include serialization, encryption, and other application
logic in the simulation. We omit physical network, storing the state on disk, or rendering the
graphical UI, as their performance is not part of our contributions. The simulation follows a
randomly generated trace of operations: adding to-dos, marking to-dos as completed, and
deleting batches of the 30 oldest to-dos. To-dos are added and completed individually, but
deleted in batches to reflect the expected usage of the application, which has a “remove all
completed to-dos” button, but no methods of batch insertion or completion.

The top plot of Figure 13 shows the runtime behavior of the simulation. The x-axis
represents abstract time as the number of executed interactions and the graphs show the
respective state of the application, i.e., the number of open and completed to-do entries.

RQ1: Time overhead is presented in Figure 13 (middle plot). It shows the runtime per
interaction (measured in batches of 100 interactions). This time includes executing the
operator locally, merging it into the local state, serializing then encrypting and sending
the delta, merging the encrypted delta into the encARDTs thus computing subsumption,
and replicating the encARDTs to the intermediary. The spike in the beginning is due to
the warm-up of the JVM. Otherwise, the overall runtime is proportional to the size of the
current application state, because tasks – such as merging the add-wins-map, computing
subsumption for existing deltas, and the application logic – linearly depend on the number of
to-do entries. We believe that staying within 3 ms per operation is reasonable. While further
optimizations are certainly possible, there is no indication that our core architecture has
prohibitive costs for local-first applications.

RQ2: Space overhead is presented in Figure 13 (bottom). Note that we show the accumu-
lated bandwidth of 100 interactions (i.e., 100 deltas), because the size would otherwise not
be visible at the scale of the figure. In summary, we observe that the total data stored at the
intermediary has a linear relation to the actual size of the application state and grows and
shrinks accordingly. We want to point out that neither the state, nor the causality metadata
increases over time. While encARDTs require that we store information about subsumed
deltas indefinitely (the set of subsumed dots), it is stored as efficient ranges that only grow
with the number of replicas, concurrent operations, and current size of the data set, but
not with the number of total interactions over time. The data transferred (used bandwidth)
between the replica and the intermediary remains mostly constant because transfer time
depends on the size of deltas, which are largely unaffected by the size of the application state.
The slight increase in bandwidth is because each removal delta includes causality information
in the encARDT that grows with the amount of currently non-removed entries. We show
the difference to using a trusted intermediary (i.e., no encARDT) in Appendix A.6, which
requires less space due to the impact of encrypted deltas discussed in Subsection 6.2. In
conclusion, we consider the size demand and required bandwidth of ARDTs adequate for the
local-first scenario.

6.2 Microbenchmarks
We perform microbenchmarks to acquire data points that the case study does not exhibit.
Specifically, we investigate the isolated overhead of encryption as well as the effect of
concurrent operations (e.g., due to multiple intermediaries) on the required storage size. We
use the same add-wins last-writer-wins map (AWLWWMap) that was used for the to-do list
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case study. Yet, the results are independent from the concrete choice of ARDT, because for
the microbenchmarks only the serialized size of the state matters, which we give explicitly.

RQ1: Time overhead of encARDTs. We measure how long it takes to prepare the serialized
bytes compared to the time for encrypting those bytes via an encARDT. The results in
Figure 14 show the difference (encryption time vs. serialization time) for different AEAD
schemes, and for a payload of 256 KiB (1,000 to-do entries). Hardware accelerated AES has
an overhead of a fraction of a millisecond. XChaCha20-Poly1305 is designed to be efficiently
implemented in software [3], thus should be considered for systems where no hardware
accelerated encryption is available. Even if it does not benefit from hardware acceleration it
has an overhead of less than 3 ms.

To put these numbers into context, consider the relative sizes of operations. The full
state of a to-do list with 1000 to-do entries serializes into a 256 KiB state. The dotted
encARDT requires an additional 0.16 ms for encryption. The serialization of the state alone
takes 0.67 ms. Sending data over the network has expected latencies of 0.1~100 ms. Receiving
and processing the data on the other replica and displaying the result adds a minimum of
7~33 ms due to typical refresh rates of monitors. In summary, we consider the time overhead
of encARDTs to be negligible compared to all other parts of the synchronization process.

RQ2: Space overhead of encARDTs. Intermediaries cannot merge states that are created
concurrently by different replicas, due to the limitations of the plaintext metadata. The
overhead depends on the encARDT and the number concurrent operations. Figure 15 shows
the space requirement of storing 1 to 4 concurrent updates using a subsuming encARDT
(left) and a dotted encARDT (right). The base size of the stored ARDT is an AWLWWMap
with 96 (+1 to +4 added) entries requiring about 14 KiB. Any trusted replica (in blue) can
always merge any received updates, thus the total stored size does not grow noticeably.

For the intermediary, however, we observe that the size of subsuming encARDT (left
subfigure) grows linearly with each concurrent update. We expected this result as each update
contains the full state to be stored, and the timestamps of the four updates are incomparable,
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because each full state differs in exactly one item, thus they do not subsume each other. For
the dotted encARDT (right subfigure), the stored state is larger than the state of the trusted
replica, because each delta is stored separately, which introduces a constant overhead per
delta. However, each concurrent update only marginally increases the state size to store the
single additional delta. Note that the number of concurrent operations is typically limited
by the number intermediaries, because once a replica is connected to an intermediary the
next operations of the replica will merge and subsume concurrent operations.

In general, storing only deltas at intermediaries has a fixed overhead, but avoids large
storage increases for concurrent updates. Which strategy is more suitable depends on how
reliable connections are, and how many intermediaries are part of the system, because both
unreliability and more intermediaries introduce more concurrency. In summary, we believe
that a wide range of potential use cases are covered by the presented encARDTs. If other
behavior is required, new variants of encARDTs with different subsumption strategies can be
used.

7 Related Work

Programming methods for local-first software. Two popular general-purpose CRDT
implementations that can be integrated into applications are automerge17 (loosely based
on a paper by Kleppmann et al. [24]) and Yjs18 [37]. Both libraries are based on the
operation-based variant of CRDTs. They run in the same process as the application and
provide the latter with an API to update and query a single JSON document (a nested tree
structure). The intended way to use the API is to have developers convert their application
state into the JSON structure, with no further customization of available operations.

REScala [34] provides programming support for local-first applications. It integrates
off-the-shelf CRDTs with functional reactive programming, the latter being a very common
approach to UI and thus local-first applications. The rationale for the integration is that
reactive applications are practically not limited by the monotonicity restriction of CRDTs,
because user interactions are monotonic by nature: Users can only press, click, and touch keys
and buttons and not “unpress” a prior action. However, REScala assumes that the developer
provides CRDTs with suitable operations, and does not consider encryption [33, 35].

Similar to our work, other systems for local-first software consider message dissemination
as an orthogonal concern that depends on the concrete network environment. Yjs, and
automerge, provide default implementations to be ready to use, while REScala defers to
ScalaLoci [58] – a library that abstracts over communication implementations. None of the
approaches considers network security beyond encrypted direct connections. Almeida et al.
and Enes et al. [2, 15] show how to achieve causal consistency for delta CRDTs independently
of the underlying network. This is done by providing an additional layer on top of another
message dissemination algorithm. While they do not consider security, their approach is
similar in that they separate different concerns in the message dissemination.

Security in replicated systems. Preguiça et al. [39] survey CRDTs in the geo-distributed
setting and point out the need for future research on security. They observe that replicas are
vulnerable to harmful operations of other replicas, and that authentication and encryption
between replicas is insufficient in the geo-distributed setting. This is because the trusted

17 https://github.com/automerge/automerge
18 https://github.com/yjs/yjs

https://github.com/automerge/automerge
https://github.com/yjs/yjs
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entities in that setting are the clients (end users) that issue operations to a replica (in the
cloud). They conclude that end-to-end security between clients is (nearly) impossible in the
existing architecture, and argue for “moving computations to the edge”. Moving computation
to the edge, while replicating state in the cloud, is exactly what ARDTs enable.

Barbosa et al. [4] implement an approach that keeps the client/replica split while prov-
ing some guarantees to clients. The clients use customized solutions from the space of
homomorphic encryption to secure their data before storing it in a distributed database
(AntidoteDB [50]), which then handles replication. This approach has the major shortcoming
that all the cryptographic constructions are specific to individual CRDTs. Moreover, they
only target honest-but-curious adversaries, which is an assumption where the attacker is
bound to service-level agreements, and only interested in secretly extracting information (i.e.,
a cloud service provider hosting the database). Crucially, this entails that an adversarial
provider could modify data, because operations cannot be authenticated.

High-level cryptographic APIs. We do believe that encARDTs offer an advantage even
when used with simple direct connections. Security is often treated as an afterthought, and
it has been shown that leaving this task of using crypto solutions to application developers
often leads to insecure systems [16, 38]. The correct usage of cryptographic components is
challenging in general [36], with 84 % of Apache projects containing cryptographic misuses [41].
Especially developers of end-user applications seem to have a hard time, with more than 95 %
of android applications that use a cryptographic API using it incorrectly [27]. High-level
abstractions with built-in cryptographic features are considered as an effective solution to
support developers with writing secure software [1, 18, 32]. With encARDTs, we bring high-
level cryptographic APIs to local-first applications, thus reducing the potential for misuse.
In addition, encARDTs define encryption of data structures, not encryption of connections,
which is better suited to the flexible dynamic connections of local-first applications.

Identities and attackers. Security and authentication of our approach require a shared
secret between trusted parties. If secrets are shared with untrusted parties, our approach does
not provide additional guarantees. Sanjuan et al. [47] and Kleppmann [23] investigate settings
where other replicas are not trusted. They argue that CRDTs are well suited to detect
Byzantine faults at the eventual consistency layer. Specifically, by including cryptographic
hashes of the causal history of each change, it is possible to discard and detect messages
from misbehaving replicas. We believe that these solutions also apply to ARDTs due to their
similarity to CRDTs. However, even when using these solutions an attacker may still execute
consistent but undesirable actions, and is able to read the system state.

To prevent undesirable actions, we need a way to manage and enforce access policies over
time. EncARDTs use a shared secret to define the current set of trusted replicas, and it is
possible to rotate this key to change the set of trusted replicas. Rault et al. [42] propose how
to manage access control itself as a CRDT, thus answering the question of who should have
access to the shared secret. Truong et al. [55] discuss authentication of the log of operations
in an RDT, which allows replicas to identify and attribute tampering carried out by replicas
with full access. Kollmann et al. [26] propose a solution to compress such authentication
information within a snapshot of an RDT. This also allows them to keep the exact history of
changes hidden from newly joined replicas by leveraging coordination-free authentication of
snapshots. We believe that these approaches could be adapted for the use with ARDTs.
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8 Conclusions and Future Work

Local-first applications address several weaknesses of a centralized software architecture. But
designing applications with consistent replication is challenging for application developers,
because it requires expertise in several system-level concerns such as consistency, networking,
and security protocols. Existing solutions such as CRDTs provide consistency “out-of-the-
box”, but have several shortcomings otherwise. First, they do not integrate well into the
application design process: Application developers have to map application-specific data
models to CRDTs, which are only available “off-the-shelf” in the form of databases [50]
or libraries with a fixed API [24, 37]. Designing application state based on a fixed set
operations is known to cause design issues [11]. Second, off-the-shelf systems do not support
heterogeneous network environments, and authenticity and confidentiality is considered as
afterthought at best.

The foundation of our solution to the above gaps is an approach for systematic, modular,
and extensible design of algebraic replicated data types (ARDTs). The approach provides the
same guarantees as CRDTs, but as a modular and extensible library that embraces algebraic
data types, which are widely used to model application state. This approach facilitates the
integration of ARDTs into existing programming models and existing network runtimes.
Further, our solution provides confidentiality and authenticity by design. Specifically, we
presented a family of encrypting ARDTs for different network requirements. Each such
encARDT wraps around the data of an ARDT and secures the data independently of
how messages are disseminated, with specific support to transmit data over untrusted
intermediaries. Using our encARDTs, the application data is authenticated and encrypted,
while retaining coordination freedom and preventing common misuses of cryptographic
primitives. A significant partial result of the above is, that while current AEAD schemes
theoretically require coordination due to the uniqueness constraint on the nonces, it is
possible to avoid coordination for long enough to make them applicable in a coordination-free
setting. Specifically, this result applies to all other approaches for local-first software that
could adapt our techniques to encrypt and authenticate their network communication.

Our evaluation shows that we can implement typical local-first applications efficiently
and that any ARDT can be securely disseminated. The performance overhead is only a
small fraction of the existing dissemination cost. The additional storage requirement is
limited by the amount of concurrent changes in the worst case and can be minimized further
by including more precise metadata. Moreover, the storage requirement does not increase
indefinitely, as ARDTs makes it possible to remove data that is no longer needed by the
application logic. Together, the results of the experiments show that it is feasible to use the
proposed solution in practice.

A remaining issue – common to all encrypted synchronization techniques – is that it
needs to leak metadata to enable efficient dissemination of messages. However, because our
approach is resilient to poor network conditions including reordering, delay, and duplication
of messages, we believe that many common mitigation techniques can be applied without
impeding normal operations. Such mitigations include sending fake data to make metadata
less usable, or routing data on multiple intermediaries such that no single one has a full view
of the system. We may also be able to apply concepts from homomorphic encryption or
secure enclaves to enable intermediaries to learn which states subsume each other, without
gaining any further insight into the exact metadata of each message.

Finally, it is noteworthy that besides solving the practical problem of ensuring the integrity
and authenticity of replicated state in the presence of untrusted replicas, encARDTs also
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represent the novel concept of RDT-based implementations of what would classically be seen
as a (network) protocol. An encARDT addresses protocol concerns such as transparency of
encrypting and decrypting transferred data, which messages are important (and must be
retransmitted), and which ones have been superseded by newer messages. Crucially, these
concerns are separated from concrete issues concerning physical networks such as message
losses, retries and retransmission delays, or splitting large packages. These concerns are
specific to each communication platform and are handled by concrete message dissemination
modules. As a future expansion on this concept it could be possible to implement other
concerns of network protocols as ARDTs. A concrete example is message delivery in causal
order, which can be achieved by attaching ordering information to each message [2]. Such an
ARDT would wrap another ARDT, similar to how an encARDT works, but use its operator
to present a state merged in causal order (temporarily ignoring messages that were received
out of order).
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A Appendix

A.1 Map Merge is Correct
Proof. Given that K is the set of all keys (replica ids), xk is a lookup of key k in map x that
returns 0 if the key is not present, {k → v}k∈K constructs a new map that associates the
key k to the value v, that m0 is a correct merge function for the values stored in the map,
and m(x, y) = {k → m0(xk, yk)}k∈K is the implementation of the merge function. All three
proofs are calculations that first expand the definition of m, then use the respective property
of the m0 function, and finally use the reverse definition of m (except in the idempotence
case which is already done).

Commutative: m(x, y) = {k → m0(xk, yk)}k∈K

= {k → m0(yk, xk)}k∈K = m(y, x)
(1)

Associative: m(m(x, y), z) = {k → m0(m0(xk, yk), zk)}k∈K

= {k → m0(xk, m0(yk, zk)}k∈K = m(x, m(y, z))
(2)

Idempotent: m(x, x) = {k → m0(xk, xk)}k∈K

= {k → xk}k∈K = x
(3)

◀

A.2 Derived Product Merge Implementation
We elaborate on the technical details of the implementation of method derived in Figure 16.
The method is marked inline to make use of compile-time meta programming, which we use
to acquire lattice instances of the individual components of the product, specifically, the
summonAll method used later. The using keyword asks the compiler to provide a product
mirror (named pm) for the product type S to allow inspection of the components of S.

The summonAll method in Line 72, similar to the using keyword, “summons” instances
provided by the given keyword based on their types. Specifically, the type we request are the
component types (pm.MirroredElemTypes) of our product mapped to the Lattice type. As an
example, the component types of our MyData class returns the type (A, B) and mapping
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70 inline def derived [S<: Product ]( using pm: ProductOf [S]): Lattice [S]=
71 val lattices =
72 summonAll [Tuple.Map[pm. MirroredElemTypes , Lattice ]]
73 . toIArray .map(_. asInstanceOf [ Lattice [Any ]])
74 new Lattice [S]:
75 def merge(left: S, right: S): S = pm. fromProduct (
76 new Product {
77 def productElement (i: Int): Any =
78 lattices (i).merge(left. productElement (i),
79 right. productElement (i))
80 })

Figure 16 Automatic derivation of lattice instances for product types.

that onto the lattice type results in the type (Lattice[A], Lattice[B]) which is the type for
which we “summon” the instances. The result is a tuple of typed lattice instances, but we
throw away all type information (Line 73) and rely on the fact that all used products have
the same component type at the same structural position.

Having computed lattice instances of the components, we create a new instance of the
lattice trait (Line 74). The merge function of that instance (defined in Line 75) uses the
pm.fromProduct helper to generically create a new instance of the result product S (e.g., a
new instance of our MyData class) in Line 76. The parameter to pm.fromProduct essentially
assigns each component at index i (productElement in Line 76) the result of using merge
function i to merge the left and right components at position i.

The technical challenges of generating merge functions for arbitrary products are mostly
related to practical concerns in the programming language.

A.3 Derived Product Merge is Correct
Proof. Given that K is the set of product indices (this would be the field names of a case
class), xk is a lookup of index k in product x, the syntax {k → v}k∈K constructs a new
product of correct type that associates the index k to the value v, each component type at
index k has a merge function mk, and m(x, y) = {k → mk(xk, yk)}k∈K is the implementation
of the merge function for the product. We show that m is commutative, associative, and
idempotent. All three proofs are calculations that first expand the definition of m, then
use the respective property of the component merge functions, and finally use the reverse
definition of m (except in the idempotence case which is already done).

Commutative: m(x, y) = {k → mk(xk, yk)}k∈K

= {k → mk(yk, xk)}k∈K = m(x, y)
(4)

Associative: m(m(x, y), z) = {k → mk(mk(xk, yk), zk)}k∈K

= {k → mk(xk, mk(yk, zk)}k∈K = m(x, m(y, z))
(5)

Idempotent: m(x, x) = {k → mk(xk, xk)}k∈K

= {k → xk}k∈K = x
(6)

◀
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A.4 Naive encARDT is Transparent
Proof. We show that for any subset of states c ⊂ S sending (encrypting) and recombining
(decrypting and merging) the set c is equivalent to merging the set c directly. This uses the
secret key k, the merge function mS for states in S, the merge function me = union of the
encARDT, the encrypt ek and decrypt dk function with dk(ek(s)) = s, the send function
sendk(s) = {ek(s)}, and the recombine function reck(c) = mS({dk(s)|s ∈ c}). The proof is
done by expanding the above definitions (highlighted in blue) when appropriate.

reck(me({sendk(s′)|s′ ∈ c}))
= mS({dk(s)|s ∈ me({sendk(s′)|s′ ∈ c})}) def of rec
= mS({dk(s)|s ∈ me({{ek(s′)}|s′ ∈ c})}) def of send
= mS({dk(s)|s ∈ {ek(s′)|s′ ∈ c}}) def of me

= mS({dk(ek(s))|s ∈ c}) simplify set ops
= mS({s|s ∈ c}) def of ek and dk

= mS(c)

(7)

◀

A.5 Subsuming encARDT is Transparent
Proof. Given a secret key k, a subset of states c ⊂ S, individual states s, x, y, z, a merge
function mS for states in S, associated data for each state as where ax ≤ ay if mS(x, y) = y,
the filter function f(c) = {x ∈ c|∄y ∈ c : ax < ay}, the merge function me(c) = f(

⋃
(c)) of the

encARDT, the encrypt ek the decrypt dk function with dk(ek(s)) = s, the current encrypted
states ce, the send function sendk(ce, s) = {ek(mS(reck(ce), s))}, and the recombine function
reck(ce) = mS({dk(s)|s ∈ ce}).

It holds that filtering distributes over union f(p ∪ q) = f(f(p) ∪ q), because all elements
of f(p) are larger or equal to all elements in p, so filtering them out first does not change the
result of f(p ∪ q).

Filter distributes over decryption, i.e., {dk(s)|s ∈ f(c)} = f({dk(s)|s ∈ c}), because
filtering is defined on associated data which is also available in the encrypted state.

It holds that filtering is subsumed by merging mS(f(c)) = mS(c), because for each
removed element r ∈ p \ f(p) it is subsumed by one of the remaining elements q ∈ f(p) thus
merging it again makes no difference mS(r, p) = p.

We first show that the merge function of the encARDT me is associative, idempotent,
and commutative. Note, that up until now, we have proven a slightly stronger version
of idempotence that requires less calculation, but we can not do so here, because the
filtering function does not provide the stronger guarantee that f(a) = a, thus we only have
m(x, x) = f(x). Instead of strong idempotence, we prove that m(m(x, y), y) = m(x, y), that
is, merging y multiple times still makes no difference, but we must merge at least once.

Commutative: me(x, y) = f(x ∪ y) = f(y ∪ x) = me(y, x) (8)

Associative: me(me(x, y), z) = f(f(x ∪ y) ∪ z) = f(x ∪ y ∪ z)
= f(x ∪ f(y ∪ z)) = me(x, me(y, z))

(9)
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Idempotent: me(me(x, y), y) = f(f(x ∪ y) ∪ y) = f(x ∪ y ∪ y)
= f(x ∪ y) = me(x, y)

(10)

Finally, transparency of the subsuming encARDT, i.e., that receiving a set of send and
filtered states is equivalent to merging those states directly. The applied definitions are listed
and the changes highlighted in blue.

reck(me({sendk(ce, s′)|s′ ∈ c}))
= mS({dk(s)|s ∈ me({sendk(ce, s′)|s′ ∈ c})}) def of rec
= mS({dk(s)|s ∈ me({{ek(mS(reck(ce), s′))}|s′ ∈ c})}) def of send
= mS({dk(s)|s ∈ f({ek(mS(reck(ce), s′))|s′ ∈ c})}) def of me

= mS(f({dk(s)|s ∈ {ek(mS(reck(ce), s′))|s′ ∈ c}})) filter distributes
= mS(f({dk(ek(mS(reck(ce), s′)))|s′ ∈ c})) simplify set ops
= mS(f({mS(reck(ce), s′)|s′ ∈ c})) def of ek and dk

= mS({mS(reck(ce), s′)|s′ ∈ c}) filter subsumed
= mS( reck(ce), mS(c)) merge properties
= mS(mS({dk(ek(s))|ek(s) ∈ ce}), mS(c)) def of rec
= mS(mS({s|ek(s) ∈ ce}), mS(c)) decrypted
= mS({s|ek(s) ∈ ce} ∪ c) merge properties

(11)

◀

A.6 Case Study with Trusted Intermediary
Figure 17 shows the benchmark results for the to-do list case study when we trust the
intermediaries and do not use an encARDT. The overall trends are similar, both the time per
interaction and the size stored on the intermediary have a linear correlation to the current
number of to-do entries. This is because those costs are inherent to the ARDT of the to-do
list. There are notable differences. First, the overall runtime when using encARDTs is better
(each interaction is faster), because merging the encARDT on the intermediary (i.e., pruning
subsumed deltas) is faster than merging the to-do list on the intermediary (i.e., merging the
two add-wins-last-writer-wins maps). The encryption overhead is negligible compared to
that cost. Second, the overall size of the stored data on the trusted intermediary is smaller,
because storing individual encrypted deltas requires more space as discussed in Subsection 6.2.
Third, the client does not have to transmit any additional causality information and also
does not create subsuming deltas that would reduce the overall size of an encARDT, but
lead to larger deltas in some cases. This leads to a nearly constant bandwidth use, with
small variations for the random difference between the relative amount of added, completed,
and removed to-dos, as well as differences in to-do description lengths.
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Figure 17 To-do list case study measurement results with trusted intermediary.
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